
オペレーティングシステム(花田) 2025/12/15

1

花田 英輔
（このPowerPointは渡辺名誉教授作成のものを花田が一部改編した）

複数のプロセス/スレッドで構成されたプログラム
◦ 1つのプログラムの中で複数の制御(実行順序)の制御
が必要な場合のお話

複数のプロセスに分担させると便利な例
◦ ネットワークからの入力を待ちながら、主たる処理をし
たい

◦利用者からの入力を待ちながら、主たる処理をしたい
◦同時に複数の端末にサービスするプログラムを作りた
い

◦同時に複数の入出力装置を利用するプログラムを作り
たい

• 以下、「プロセス」で説明するが
「スレッド」でも同様

複数のプロセスが分担する場合の注意点

◦各プロセス/スレッドの処理は独立させた方が
良いが完全には独立できない場合あり

互いに連絡を必要とする場合

互いの実行順序の調整が必要な場合

プロセス/スレッド間で同期を取る必要性あり
◦プロセス同士で同期実現は面倒⇒OSに同期
処理の機能

生成：プロセスがプロセスを生成
◦作る方＝親プロセス、作られる方＝子プロセス

消滅：親が停止、または自分で停止
◦子の生成から消滅までを、親が世話
◦親が先に死んだら、トッププロセス（init）が世話

init

cshhttpdlpdcronsyslogd getty

httpdhttpdhttpd xinit

xtermtwm

csh

vi

UNIXでの実行例

sshd

起動時に作られる初期化
プロセス

・・・・
if(fork() == 0){
・・・・
exit();

}
else {
・・・・
wait();

}
・・・・

親プロセス

fork＝自プロセスをコピーして新プロセス生成
親での戻り値⇒子プロセスの番号
子での戻り値⇒ゼロ

コピー ・・・・
if(fork() == 0){
・・・・
exit();

}
else {
・・・・
wait();

}
・・・・

子プロセス

終了

Zombie状態
(プロセス情報残、
確認を受け消去)

・・・・
if(fork() == 0){

exec(“progxx”);
}
else {
・・・・
wait();

}

親プロセス

progxx

別プログ
ラム実行

・・・・
if(fork() == 0){
exec(“progxx”);

}
else {
・・・・
wait();

}

子プロセス

ロード
実行

コピー

終了
（Zombie） progxx

子生成

1 2

3 4

5 6

オペレーティングシステム(花田) 2025/12/15

2

並列で処理をしているとき、相手の処理状況
を把握して進める必要性がある

◦相手が作業している途中のデータでは？

◦相手が事前に必要な処理を終えているか？

◦処理が終わったら結果を渡して！

◦勝手に進めるな！

◦ ・・

 OSがサービスする同期機能
◦排他制御機能：重要な処理中に他が邪
魔しないよう制御

◦事象の連絡機能：ある事象が発生したこ
とを連絡

◦プロセス間通信機能：プロセス間での
データの受け渡し

共用変数sumの値を2つのプロセスが扱う

プロセスは切り替わりながら実行
⇒もしも計算途中で切り替わると？

sum=sum+2; sum=sum+3;
10
sum
15

プロセス１ プロセス２こうなるはず

sum

10
sum

13

プロセス１
（sum=sum+2）

プロセス２
（sum=sum+3）

sumをレジスタにロード
レジスタ値＝10

レジスタに２を加算
レジスタ値＝12

レジスタ値をsumへストア
sum＝12

sumをレジスタにロード
レジスタ値＝10

レジスタに3を加算
レジスタ値＝13

レジスタ値をsumへストア
sum＝13

12

割込み発生
プロセス切替
レジスタ退避

レジスタ復帰

途中で切り替わると最終結果がおかしい

割込み発生
プロセス切替

 分かりやすい例示：銀行預金残高

10万円

預金残高

残高を読む
[10万円]

2万円減算
[8万円]

残高を書く
[8万円]

残高を読む
[10万円]

3万円加算
[13万円]

残高を書く
[13万円]

13万円

佐賀支店
「2万円引出し」

福岡支店
「3万円入金」

8万円

 間違いを防ぐには同時に処理しない（＝排他）

 一方が終わってから他方を処理する

10万円

預金残高

残高を読む
[13万円]

2万円減算
[11万円]

残高を書く
[11万円]

残高を読む
[10万円]

3万円加算
[13万円]

残高を書く
[13万円]

13万円

佐賀支店
「2万円引出し」

福岡支店
「3万円入金」

11万円

7 8

9 10

11 12

オペレーティングシステム(花田) 2025/12/15

3

sum=sum+2; sum=sum+3;

•同時に実行しない
•実行中ならば待つ

⇒排他制御

排他制御が必要な区間

＝クリティカルセクション
(危険区域)プロセス１ プロセス２

危険区域
(sum=sum+2);

プロセス

出口区域

入口区域 OS

OS

実行して良いか？
（Yesなら先へ進む

Noなら待ち）

終わったよ！

OSで制御 危険区域

プロセス

出口区域

入口区域

カーネル

使用
中？

使用中にする 待ち列に入れる

プロセススケジューラ
戻る

YESNO

待ち列
あり？

１プロセスの
待ちを解除

YES

未使用にする

戻る

NO

プロセススケジューラ

 ロック変数：下記ルーチンでのみアクセス可能
◦ lock(A) : ロックAを確保する。確保できなければ待つ。
◦ unlock(A) ： ロックAを解放する。

危険区域

unlock(A)

lock(A) カーネル呼び出し

カーネル呼び出し

 セマフォ：下記ルーチンのみでアクセス可の整数変数
◦ DOWN(S) ： セマフォSの値をdecrement（-1）する。

結果が非負ならば、次の処理へ進む。
負ならば、プロセスは待ち列へ。

◦ UP(S) ： セマフォSの値をincrement(+1)する。
結果が正ならば次の処理へ進む。
非正ならば、プロセスを待ち列から選択、レディへ。

危険区域

UP(S)

DOWN(S) カーネル
呼び出し

カーネル
呼び出し

１

0

１

S：カーネルだけが変更可能

S＝危険区域の鍵
DOWN(S)：鍵をもらう

無いなら待つ
UP(S)：鍵を返す
鍵の出し入れは管理者のみ

 semaphore：腕木式信号

２

空き部屋数＝セマフォ値

受付

•使いたい
•使い終わった

貸し部屋

停止 進行

列車の侵入制御
(日本では津軽鉄道のみ残存)

分かりやすい例

 monitor＝排他実行機能を持つクラス
◦ メソッドが排他実行（一つが実行中なら他は待たされる）
◦ クリティカルセクションの素直な表現

monitor class Account {
・・・

public method boolean withdraw(int amount)
{ ・・・・ }
public method deposit(int amount)
{ ・・・・ }

}

引き出す

預ける

lock(a);
・・・
if(・・・)return;
・・・
unlock(a);

 Lock/Unlock、Up/Downでは開放
忘れの可能性

13 14

15 16

17 18

オペレーティングシステム(花田) 2025/12/15

4

例)あるプロセスの処理が他プロセス処理に依存（実行順固定）
◦ データ収集が終わったよ、データ解析開始して！
◦応用プログラム同士では面倒・非効率（下図）

0
完了フラグ

完了←1

プロセス１

前処理

プロセス２

完了？

1秒待ち

後処理

0
1

一定時間ごとに完了か調べる
（ポーリング）⇒効率悪い

OSで制御:⇒事象の連絡機能

どちらが先でも良いから一つずつ

◦ OSで制御⇒排他制御機能

1

プロセス２

事象の受け取り

事象発生の連絡

カーネル

待ち列
あり？

発生を記録 1プロセスの
待ちを解除

プロセススケジューラ

戻る

YESNO

既に発
生？

待ち列に入れる

YES

記録を消去

戻る

NO

プロセススケジューラプロセス１

発生
したよ！

発生
まだか？

後処理

前処理

プロセス２

DOWN(S)
UP(S)

プロセス１

後処理

前処理

0 S

1

0

プロセス２

DOWN(S)
UP(S)

プロセス１

後処理

前処理
0 S

-1

0

待ち

プロセス１が先に到着⇒プロセス2は待ちなしで次の処理へ

プロセス２が先に到着⇒プロセス１の到着を待ってから次の
処理へ

セマフォ初期値：排他⇒１、連絡⇒０

// dataの生産
・・・・・

synchronized(buffer){
while(bufferFill==ture){
・・・
buffer.wait();
・・・

}
}

//バッファに入れる
buffer.put(data);

synchronized(buffer){
bufferFill=true;
buffer.notify();

}

synchronized(buffer){
while(bufferFill==false){
・・・
buffer.wait();
・・・

}
}

//バッファから取り出す
data=buffer.get();

synchronized(buffer){
bufferFill=false;
buffer.notify();

}

// データの消費
・・・・

生産者スレッド 消費者スレッド

synchronized＝排他実行を指示

連絡発行

連絡待ち

プロセス間通信機能（IPC、Inter Process
Communication）
◦ プロセス間でデータ（メッセージともいう）を送受
◦排他・同期より高機能（多量の情報を交換できる）

 UNIXにおけるIPC機能⇒パイプ

write() read()
パイプ
（バッファリング可）

プロセス１ プロセス２

シェルのコマンドとしても指定可能（｜：縦棒記号）
aa | bb

⇒プログラムaaの標準出力をプログラムbbの標準入力にパイプ接続

メッセージ

 2つのコマンドをつなぐ
コマンド１ ｜ コマンド2 ：コマンド１出力をコマンド2
入力へ

 使用例
$ ls | wc –l ←ファイル一覧出力を、行の計数へ
10 ←ここにファイルは10個（lsは1行1ファイル表示のため）

$ ls | grep “txt” ←ファイル一覧出力を文字列探索へ
test.txt ←ファイル名に”txt”を含むファイル一覧
aa.txt

$ ls | grep “txt” | wc –l ←ファイル名に“ｔｘｔ”を含むファイル
の個数

コマンド２コマンド１
パイプ

入力 入力出力 出力

19 20

21 22

23 24

オペレーティングシステム(花田) 2025/12/15

5

同期の取り方がまずくて処理が先に進めなくな
ること

プロセス１

プロセス２

ロックB

ロックA

待機

待機

確保 確保

単純なデッドロック

プロセス１

プロセス２

ロックB

ロックC

待機

待機

確保 確保

プロセス３ ロックA

待機
確保

三すくみ
• ロックを一つ確保したまま、もう一
つを待つと起こる

• ロック順を決めておけば、防げる
ことが多い

靴：右足用

靴：左足用

確保確保

待機

待機

現品限り大安売り

1. セマフォを使うと排他制御ができる。２つのプ
ロセスA,Bがクリティカルセクションの入り口に
前後して到達したときのSの値の変化を示せ。

2. 「デッドロック」について説明せよ
3. (予習)メモリの「断片化」とは何か説明せよ
（1.のプロセスの実行形態等はMoodle内ファイルを用
いること）

今回のファイル名は“学籍番号-OS10.docx”
(例：24238000-OS10.docx)としてください

締切：12月19日（金） 18:00 （遅れた場合は減点）

25 26

