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花田 英輔
（このPowerPointは渡辺名誉教授作成のものを花田が一部改編した）

ユーザ と OS の間
⇒ユーザインタフェース

応用プログラム と OS の間
⇒プログラミングインタフェース
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#include <stdio.h> 
#include <fcntl.h> 
int main(){ 

int fp; 
char c[20]; 
fp = open("./test.txt", O_RDONLY); 
read(fp, c, 20); 
printf("%s", c); 
return 0; 

}

• ハードウェア関連の処理は
OSに依頼してやってもらう

• それぞれのアプリが勝手に
行うと混乱する

 OSの機能をプログラムから利用
 API（Application Program Interface）とも呼ぶ

◦応用プログラム（Application Program）向けの受付
窓口
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APIの用語は、OS以外のソフ
トウェアモジュールについても
用いられる

ハード
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使い方
◦普通の関数呼び出しで利用

実現方法
◦ OS重要部分（カーネル）は、応用プログラムと分離
◦関数内でカーネルの呼出し＝カーネル呼出し命令
◦詳細は次章

1. カーネル呼出し命令(ハードウェア命令)を発行
2. 割込み発生：応用プログラムを中断して割込み処理
3. 特権モードへ移行
4. OS本体内の処理ルーチンへジャンプ
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特権モード
危険な命令も実行可能

非特権モード
危険な命令は実行不可
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OS

1 2

3 4

5 6



オペレーティングシステム(花田) 2025/10/27

2

 UNIX：
◦ システムコール関数＝Cの関数

 汎用機OS：
◦ OSマクロ
＝アセンブリ言語のマクロ命令

 Windows：
◦ Win32API、Win16API、Win64API他、 C++等から利用
◦ GUI、マルチメディア等の機能も含む

 MacOS：
◦ Cocoa（MacOS X）、Objective Cから利用
◦ Carbon(Mac OS 9 以前)、C等から利用
◦ その他

#include<windows.h>

int WINAPI WinMain(
HINSTANCE hInstance ,
HINSTANCE hPrevInstance ,
PSTR lpCmdLine ,
int nCmdShow ) {

MessageBox(NULL , TEXT(“Hello!") ,
TEXT(“MessageBoxTest") , MB_OK);

return 0;
} Win32プログラム例

 UNIXとC言語は密接な関係
 UNIX

◦ 当初はアセンブリ言語、直ぐに高水準言語で書きなおし
◦ その時にOS記述用の高水準言語として考案＝C言語

 C文法中には入出力機能無し
◦ 標準ライブラリ中に入出力を含むOS呼出しの関数群

 Cの標準化（ANSI）時、標準ライブラリも共に標準化
◦ UNIX以外のOSの機能も同じインタフェースで可能

 入出力
◦ fopen(), fclose(), remove(), rename(), printf(), 

scanf(), getchar(), fgetc(), fgets(), putchar(), 
fputc(), fread(), fwrite(), fseek(),

 ユーティリティ
◦ malloc(), free(), exit(), abort(),

 シグナル
◦ signal(), raise(),

 日付と時間
◦ clock(),time(),

元々はUNIXの機能、標準化に伴い他のOSでも同様に動く

＝プログラミングインタフェース

 システムコール関数

◦ ライブラリ関数より低レベル、カーネル呼出しを含む
 C標準ライブラリ内の関数

◦内部でシステムコール関数を利用（利用しないもの
も）

 システムコール関数の例

◦ open(), read(), write(), lseek(), ioctl(), close(), 
mkdir(), rmdir(), pipe(), chmod(), fork(), 
exec(), exit(), wait(), brk(),,

UNIX実装
他のOSで動くとは限らない

read()

read()

応用プログラム１
カーネル

read()

fread()

fread()
応用プログラム２ ライブラリ関数 システムコール関数

システムコール関数

ライブラリ関数はバッファ利用
プログラム中でfreadとreadを併用してはダメ

バッファ：
効率良く処理するため
データを溜めておく領域

#include <stdio.h> 
#include <fcntl.h> 
int main(){ 

int fp; 
char buff[20]; 
fp = open("./test.txt", 

O_RDONLY); 
read(fp, buff, 20); 
printf("%s", buff); 
close(fp);
return 0; 

}

#include <stdio.h> 
#include <stdlib.h>
int main(){ 

FILE* infile; 
char buff[20];
infile=fopen(“./test.txt","r"); 
fread(buff,sizeof(buff),1,infile)
printf("%s", buff); 
fclose(infile);
return 0; 

}

システムコール関数使用 標準ライブラリ関数使用

混在しないこと=個別にバッファリング処理するため順序が不定となる
同理由で、stdioとiostreamの混在利用は不可（混在可の設定もあり）
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 Dynamic Link Library（ DLL、動的リン
クライブラリ）：Windows等で採用

 Static Link Library(静的リンクライブラ
リ）：旧来の考え方

コンパ
イル

リンク ロード
実行

ExeObj

静的リンク
ライブラリ

動的リンク
ライブラリ

DLLの利点・難点
• 実行ファイルが小さくなる、メモリ領域が共
用できる

• 互換性のあるDLLファイルが実行時に必要

別システムへプログラムを移行するとき

 ソースプログラム互換性

◦移行先の環境に合ったコンパイラで再コンパイルす
れば動く

◦ APIが同等、ANSI/ISO C規格
◦整数ビット長・エンディングなどを考慮したコード

オブジェクトプログラム互換性（バイナリ互換性）
◦ そのままで動く、ハードウェアが同等
◦ Windows用ソフト：別メーカのマシンでも動く

中間言語による互換性（Java言語）
◦仮想マシンの機械語にコンパイル、仮想マシン上で実行

⇒一つのバイトコードがどこでも動く
（仮想マシンのエミュレータがあれば）
＝ Write Once, run anywhere

 インタプリタ方式（JavaScript、Perl、Ruby等）
◦ ソースプログラムのまま保持・流通、実行時に解釈・実
行

Javaソー
ス

仮想マシンの機械
語

(バイトコード)
Javac

コンパイル
実行

物理マシン

保持・流通作成

仮想
マシン

 ソースプログラム互換性も実現困難
⇒できるだけ修正しやすく

 移植性＝修正のしやすさ
◦ 移植性が高いプログラムが望ましい

 移植性を高めるには
◦ 共通使用の範囲内の機能を使う（例：ANSI/ISO C規格）
◦ マシン差を吸収する機能を使う（例ntoh,hton:バイト順の差吸
収）

◦ マシン分岐（コンパイル時、実行時）するコード（例#ifdef unix）
◦ 標準機能、推奨機能を使う
◦ 稼働実績の多い機能を使う
◦ ．．．

ntoh (network to host)
hton (host to network)
ネットワーク標準のバイト順と当マシンで
のバイト順を変換
（リトルエンディアンとビッグエンディアン）

1. APIとは何か。またそれが必要な理由を説明せよ。
2. 「互換性がある」と「移植性が高い」はそれぞれど
ういう意味か記せ。

3. （予習）OSの実行モードについて調べて記せ

 今回のファイル名は“学籍番号-OS04.docx”
(例：24238000-OS04.docx)としてください

 締切：10月31日（金） 18:00 （遅れた場合は減点）
記載時の注意事項
参考資料(Ｗｅｂページ)がある場合は出典を書くこと
◦出典を書かずに引用した場合は減点対象です

 講義に関する連絡はLive Campusを用いて
メールで行います

 本講義に関する情報は次のWebpageに掲載す
るので、時々参照すること

https://www.ai.is.saga-u.ac.jp/~hanada/OS/

注意：来週11月3日(月)は祝日です。
次回講義は6日(木)です。
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