
オペレーティングシステム(花田) 2025/10/27

1

花田 英輔
（このPowerPointは渡辺名誉教授作成のものを花田が一部改編した）

ユーザ と OS の間
⇒ユーザインタフェース

応用プログラム と OS の間
⇒プログラミングインタフェース

ハードウェア

オペレーティングシステム

応用
プログラム

ユーザ
インタフェース

プログラミング
インタフェース

利用者

#include <stdio.h> 
#include <fcntl.h> 
int main(){ 

int fp; 
char c[20]; 
fp = open("./test.txt", O_RDONLY); 
read(fp, c, 20); 
printf("%s", c); 
return 0; 

}

• ハードウェア関連の処理は
OSに依頼してやってもらう

• それぞれのアプリが勝手に
行うと混乱する

 OSの機能をプログラムから利用
 API（Application Program Interface）とも呼ぶ

◦応用プログラム（Application Program）向けの受付
窓口

OS

Open()

Read()

Write()

Close()

Exit()

応用プログラム

A
P
I

呼出し

APIの用語は、OS以外のソフ
トウェアモジュールについても
用いられる

ハード
ウェア

×

使い方
◦普通の関数呼び出しで利用

実現方法
◦ OS重要部分（カーネル）は、応用プログラムと分離
◦関数内でカーネルの呼出し＝カーネル呼出し命令
◦詳細は次章

1. カーネル呼出し命令(ハードウェア命令)を発行
2. 割込み発生：応用プログラムを中断して割込み処理
3. 特権モードへ移行
4. OS本体内の処理ルーチンへジャンプ

open()

read()

機能設定
カーネル呼
出し命令

後処理

open()

機能設定
カーネル呼
出し命令

後処理

read()

応用
プログラム

入口
モード切替
機能選択

機能1
の本体

機能2の
本体

特権モード
危険な命令も実行可能

非特権モード
危険な命令は実行不可

カーネル
OS

1 2

3 4

5 6



オペレーティングシステム(花田) 2025/10/27

2

 UNIX：
◦ システムコール関数＝Cの関数

 汎用機OS：
◦ OSマクロ
＝アセンブリ言語のマクロ命令

 Windows：
◦ Win32API、Win16API、Win64API他、 C++等から利用
◦ GUI、マルチメディア等の機能も含む

 MacOS：
◦ Cocoa（MacOS X）、Objective Cから利用
◦ Carbon(Mac OS 9 以前)、C等から利用
◦ その他

#include<windows.h>

int WINAPI WinMain(
HINSTANCE hInstance ,
HINSTANCE hPrevInstance ,
PSTR lpCmdLine ,
int nCmdShow ) {

MessageBox(NULL , TEXT(“Hello!") ,
TEXT(“MessageBoxTest") , MB_OK);

return 0;
} Win32プログラム例

 UNIXとC言語は密接な関係
 UNIX

◦ 当初はアセンブリ言語、直ぐに高水準言語で書きなおし
◦ その時にOS記述用の高水準言語として考案＝C言語

 C文法中には入出力機能無し
◦ 標準ライブラリ中に入出力を含むOS呼出しの関数群

 Cの標準化（ANSI）時、標準ライブラリも共に標準化
◦ UNIX以外のOSの機能も同じインタフェースで可能

 入出力
◦ fopen(), fclose(), remove(), rename(), printf(), 

scanf(), getchar(), fgetc(), fgets(), putchar(), 
fputc(), fread(), fwrite(), fseek(),

 ユーティリティ
◦ malloc(), free(), exit(), abort(),

 シグナル
◦ signal(), raise(),

 日付と時間
◦ clock(),time(),

元々はUNIXの機能、標準化に伴い他のOSでも同様に動く

＝プログラミングインタフェース

 システムコール関数

◦ ライブラリ関数より低レベル、カーネル呼出しを含む
 C標準ライブラリ内の関数

◦内部でシステムコール関数を利用（利用しないもの
も）

 システムコール関数の例

◦ open(), read(), write(), lseek(), ioctl(), close(), 
mkdir(), rmdir(), pipe(), chmod(), fork(), 
exec(), exit(), wait(), brk(),,

UNIX実装
他のOSで動くとは限らない

read()

read()

応用プログラム１
カーネル

read()

fread()

fread()
応用プログラム２ ライブラリ関数 システムコール関数

システムコール関数

ライブラリ関数はバッファ利用
プログラム中でfreadとreadを併用してはダメ

バッファ：
効率良く処理するため
データを溜めておく領域

#include <stdio.h> 
#include <fcntl.h> 
int main(){ 

int fp; 
char buff[20]; 
fp = open("./test.txt", 

O_RDONLY); 
read(fp, buff, 20); 
printf("%s", buff); 
close(fp);
return 0; 

}

#include <stdio.h> 
#include <stdlib.h>
int main(){ 

FILE* infile; 
char buff[20];
infile=fopen(“./test.txt","r"); 
fread(buff,sizeof(buff),1,infile)
printf("%s", buff); 
fclose(infile);
return 0; 

}

システムコール関数使用 標準ライブラリ関数使用

混在しないこと=個別にバッファリング処理するため順序が不定となる
同理由で、stdioとiostreamの混在利用は不可（混在可の設定もあり）

7 8

9 10

11 12



オペレーティングシステム(花田) 2025/10/27

3

 Dynamic Link Library（ DLL、動的リン
クライブラリ）：Windows等で採用

 Static Link Library(静的リンクライブラ
リ）：旧来の考え方

コンパ
イル

リンク ロード
実行

ExeObj

静的リンク
ライブラリ

動的リンク
ライブラリ

DLLの利点・難点
• 実行ファイルが小さくなる、メモリ領域が共
用できる

• 互換性のあるDLLファイルが実行時に必要

別システムへプログラムを移行するとき

 ソースプログラム互換性

◦移行先の環境に合ったコンパイラで再コンパイルす
れば動く

◦ APIが同等、ANSI/ISO C規格
◦整数ビット長・エンディングなどを考慮したコード

オブジェクトプログラム互換性（バイナリ互換性）
◦ そのままで動く、ハードウェアが同等
◦ Windows用ソフト：別メーカのマシンでも動く

中間言語による互換性（Java言語）
◦仮想マシンの機械語にコンパイル、仮想マシン上で実行

⇒一つのバイトコードがどこでも動く
（仮想マシンのエミュレータがあれば）
＝ Write Once, run anywhere

 インタプリタ方式（JavaScript、Perl、Ruby等）
◦ ソースプログラムのまま保持・流通、実行時に解釈・実
行

Javaソー
ス

仮想マシンの機械
語

(バイトコード)
Javac

コンパイル
実行

物理マシン

保持・流通作成

仮想
マシン

 ソースプログラム互換性も実現困難
⇒できるだけ修正しやすく

 移植性＝修正のしやすさ
◦ 移植性が高いプログラムが望ましい

 移植性を高めるには
◦ 共通使用の範囲内の機能を使う（例：ANSI/ISO C規格）
◦ マシン差を吸収する機能を使う（例ntoh,hton:バイト順の差吸
収）

◦ マシン分岐（コンパイル時、実行時）するコード（例#ifdef unix）
◦ 標準機能、推奨機能を使う
◦ 稼働実績の多い機能を使う
◦ ．．．

ntoh (network to host)
hton (host to network)
ネットワーク標準のバイト順と当マシンで
のバイト順を変換
（リトルエンディアンとビッグエンディアン）

1. APIとは何か。またそれが必要な理由を説明せよ。
2. 「互換性がある」と「移植性が高い」はそれぞれど
ういう意味か記せ。

3. （予習）OSの実行モードについて調べて記せ

 今回のファイル名は“学籍番号-OS04.docx”
(例：24238000-OS04.docx)としてください

 締切：10月31日（金） 18:00 （遅れた場合は減点）
記載時の注意事項
参考資料(Ｗｅｂページ)がある場合は出典を書くこと
◦出典を書かずに引用した場合は減点対象です

 講義に関する連絡はLive Campusを用いて
メールで行います

 本講義に関する情報は次のWebpageに掲載す
るので、時々参照すること

https://www.ai.is.saga-u.ac.jp/~hanada/OS/

注意：来週11月3日(月)は祝日です。
次回講義は6日(木)です。

13 14

15 16

17 18


